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‡ L D Landau Institute for Theoretical Physics, 117940, Moscow, Russia
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Abstract. We investigate analytically the problem of enumeration of nonequivalent primitive
words in the locally free,LFn and braid groupsBn for n � 1 by analysing the random word
statistics and target spaces on these groups. We develop a ‘symbolic dynamics’ method for exact
word enumeration in locally free groups and give arguments in support of the conjecture that
the number of very long primitive words in the braid group is not sensitive to the precise local
commutation relations. We touch briefly the connection of these problems with conventional
random operator theory, localization phenomena and statistics of systems with quenched disorder.
We also discuss the relation of particular problems of random operator theory to the theory of
modular functions.

1. Introduction: problems and motivations

Recent years have been marked by the emergence of more and more problems related to the
consideration of physical processes on noncommutative groups. In trying to classify such
problems, we distinguish between the following categories in which the noncommutative
origin of phenomena appear with perfect clarity.

(1) Problems connected with the spectral properties of the Harper–Hofstadter equation
[1] dealing with the electron dynamics on the lattice in a constant magnetic field, groups of
magnetic translations [2, 3] and properties of quantum planes [4].

(2) Problems of classical and quantum chaos on hyperbolic manifolds: spectral
properties of dynamical systems and derivation of trace formulae [5–7] as well as
construction of probability measures for random walks on modular groups [8].

(3) Problems giving rise to application of quantum group theory in physics: deformations
of classical Abelian objects such as harmonic oscillators [9] and standard random walks [10].

(4) Problems of knot theory and statistical topology: construction of non-Abelian
topological invariants [11, 12], consideration of probabilistic behaviour of the words on the
simplest noncommutative groups related to topology (such as braid groups) [13], statistical
properties of ‘anyonic’ systems [14].

(5) Classical problems of random matrix and random operator‖ theory and localization
phenomena: determination of Lyapunov exponents for products of random noncommutative

§ Unité de Recherche des Universités Paris XI et Paris VI associée au CNRS.
‖ Following Pastur, we will distinguish between random matrices and matrix representations of random operators.
To the random operators we associate ann× n table having of ordern random entries; if the number of random
entries grows faster thann whenn→∞, we call such a table a random matrix.
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matrices [15–17], study of the spectral properties and calculation of the density of states of
large random matrices [18, 19].

Certainly, such a division of problems into these categories is very speculative and
reflects to a marked degree the authors’ personal point of view. However, we believe that
the enumerated items reflect, at least partially, the currently growing interest in theoretical
physics of the ideas of noncommutative analysis.

Let us stress that we do not touch upon the pure mathematical aspects of noncommutative
analysis in this paper and the problems discussed in this work mainly concern the points
(4) and (5) of the list above.

A preliminary analytical and numerical study of the statistics of random walks (Markov
chains) on braid and so-called ‘locally free’ groups† (see definition below) was recently
undertaken in works [20, 21]. In the case of the braid group, the rather complicated group
structure prevents us from applying the simple geometrical pictures of the free group02

(see [22]). Nevertheless the problem of the limit distribution for random walks onBn can be
reduced to the problem of a random walk on some graph [20, 21]. In the case of the group
B3 we were able to construct this graph explicitly, whereas for the groupBn (n > 4) we
gave only an upper estimate for the limit distribution of random walks analysing statistics
of Markov chains on ‘locally free groups’.

The study of problems dealing with the limit distributions of Markov chains on braid
group Bn requires examination of a ‘target space’ of this group, i.e. a space where the
random walk takes place. The structure of the target space is uniquely determined by the
group relations.

In this work we study the target space of the braid groupBn when n � 1, trying to
develop a new ‘statistical approach’ for word enumeration in this group.

We should stress that our presentation offers a mathematical analysis which is far from
being rigorous, and the ideas expressed here are mainly supported by numerical simulations.
Moreover, we skip here some important but difficult questions, such as the problem of ‘word
identity’ in the braid group (deep advances concerning this subject can be found in recent
work [23]). Our aim is to describe a constructive algorithm which, of course, has to be be
justified and verified later.

The structure of the paper is as follows. In the next section we give some necessary
definitions concerning braid and ‘locally free’ groups and describe the model under
consideration; section 3 is devoted to developing a ‘symbolic dynamics’ method for word
enumeration in the locally free groupLFn (for n� 1). The target space of the braid group
is studied in section 4 by means of a statistical approach based on the concept of a ‘locally
free group with errors’. In the discussion we express a geometrical point of view on the
problem of word enumeration; while in the appendix we pay attention to additional links
between the above mentioned problems and conventional random matrix theory, localization
phenomena and statistics of systems with ‘quenched’ disorder. We also briefly discuss the
possible relations between particular problems of random operator theory and the theory of
modular functions.

2. Basic definitions and statistical model

First we recall some useful notation concerning the braid and ‘locally free’ groups.

† This notation has been introduced by Vershik in [20].
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2.1. Braid group

The braid groupBn of ‘n-strings’ hasn−1 generators{σ1, σ2, . . . , σn−1} with the following
commutation relations:

σiσi+1σi = σi+1σiσi+1 (16 i < n− 1)

σiσj = σjσi (|i − j | > 2)

σiσ
−1
i = σ−1

i σi = e.
(2.1)

Let us mention that:
—A word written in terms of ‘letters’—generators from the set{σ1, . . . , σn−1, σ

−1
1 , . . . ,

σ−1
n−1} gives a particularbraid. Schematically the generatorsσi andσ−1

i may be represented
as follows

@@

@@

�
�
�
��

@
@
@
@@

��

��

1 2

. . .

. . . i i + 1

. . .

. . . n− 1 n

= σi

1 2

. . .

. . . i i + 1

. . .

. . . n− 1 n

= σ−1
i

—The length of the braid is the total number of letters used, while theminimal
irreducible lengthhereafter referred to as ‘primitive word’ is the shortest noncontractible
length of a particular braid remaining after all possible group relations (2.1) are applied.
Diagrammatically, the braid can be represented as a set of crossed strings going from the
top to the bottom after gluing the braid generators.

—The closed braid appears after gluing the ‘upper’ and the ‘lower’ free ends of the
braid on the cylinder.

—Any braid corresponds to some knot or link; hence the possibility to use the braid
group representation for the construction of topological invariants of knots and links. Note,
however, that the correspondence between braids and knots is not mutually single valued
and each knot or link can be represented by an infinite series of different braids.

2.2. Locally free group

The groupLFn(d) is calledlocally free if the generators,{f1, . . . , fn−1} obey the following
commutation relations:

(a) each pair(fj , fk) generates the free subgroup of the groupLFn(d) if |j − k| < d;
(b) fjfk = fkfj for |j − k| > d.
We will be concerned mostly with the cased = 2 for which we defineLFn(2) ≡ LFn.
—The length of the word written in terms of letters{f1, . . . , fn−1, f

−1
1 , . . . , f −1

n−1} is
the total number of generators used, and the ‘primitive word’ is the shortest noncontractible
length of a particular word after applying all relations of the groupLFn(2) (cf the case
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of the braid group). The graphical representation of generatorsgi and g−1
i is also rather

similar to that of the braid group:

1 2

. . .

. . . i i + 1

. . .

. . . n− 1 n

= fi

1 2

. . .

. . . i i + 1

. . .

. . . n− 1 n

= f −1
i

�	

�	

It is easy to see that the following geometrical identity is valid:

?? ? ?

≡
�
�

�
�

i i + 1 i i + 1

hence, it is unnecessary to distinguish between ‘left’ and ‘right’ operatorsfi .
It can be seen that the only difference between the braid and locally free groups consists

of the elimination of the Yang–Baxter relations (first line in equation (2.1)).

2.3. Statistical model

Our aim is to calculate a specific ‘partition function’,Vn(µ, d = 2), giving the number of
all nonequivalent primitive words of lengthµ in the groupsLFn+1(d = 2) andBn+1 for
n� 1.

Remark. To have a geometrical picture of the groupLFn+1 let us describe the recursion
procedure of raising the graph (the ‘target space’) associated with this group.

Take thefree group0n with generators{f̃1, . . . , f̃n} where all f̃i (1 6 i 6 n) do not
commute. It is well known that the group0n has the structure of a 2n-branching Cayley
tree,C(0n) (see figure 1(a)) where the number of distinct primitive words of lengthµ is
equal to the number̃Vn(µ) of vertices of the treeC(0n) lying at a distance ofµ steps from
the origin:

Ṽn(µ) = 2n(2n− 1)µ−1. (2.2)

The graphC(LFn+1) corresponding to the groupLFn+1 can be constructed from the graph
C(0n) in accordance with the following recursion procedure.
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Figure 1. Graphs, corresponding to: (a) free group0n; (b) locally free groupLFn+1; (c)
complete commutative group. In the case of locally free group the verticesA andB should be
glued because they represent the same word in the groupLFn+1.

(a) Take the root vertex of the graphC(0n) and consider all vertices at a distance
µ = 2 from it. Identify those vertices which correspond to the equivalent words in the
groupLFn+1 (see example in figure 1(b)).

(b) Repeat this procedure taking all vertices at the distanceµ = (1, 2, . . .) and ‘gluing’
them at the distanceµ+ 2 according to the definition of the locally free group.

By means of the procedure described, we raise a graph (‘target space’) corresponding
to the locally free groupLFn+1. Now our main problem can be reformulated as follows:
how manydistinctvertices has the graphC(LFn+1) at a distance ofµ steps from the origin
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(for n� 1)?
In the next section we give an exact answer to that question, which we use, in turn, as

the basis for consideration of the much trickier case of the braid group.
It is worthwhile mentioning that the graphC(En+1) of the complete commutative group

En+1 (all generators ofEn+1 commute with each other) is the lattice embedded inRn (see
figure 1(c)). Hence, the number of nonequivalent wordsV comm

n (µ) of length µ can be
roughly estimated as the number of lattice points lying on the surface of then-dimensional
sphere, i.e.

V comm
n (µ) ' constantµn−1. (2.3)

Comparing (2.2) and (2.3) we obtain

lim
µ→∞

1

µ
ln Ṽn(µ) = ln(2n− 1) > 0

lim
µ→∞

1

µ
lnV comm

n (µ) = 0.
(2.4)

Naively we could expect that the behaviour limµ→∞ 1
µ

lnVn(µ) = 0 for ‘locally free’
and braid groups remains unchanged (i.e. the same as in the completely commutative case)
because forn � 1 we have of order∼ n2 commutative relations and only of order∼ n
noncommutative ones. However, it is proven forLFn and conjectured forBn that

lim
µ→∞

n=constant�1

1

µ
lnVn(µ) = constant> 0

which clearly reflects the hyperbolic character of these groups.

3. Exact words enumeration in locally free groups

We derive here an explicit expression for the numberVn(µ, d) of all nonequivalent primitive
words of lengthµ in the groupLFn+1(d) (whend = 2 andn� 1) on the basis of the so-
called ‘normal order’ representation of words proposed by Vershik in [24] and developed
in [20, 21] which is reminiscent of the enumeration of ‘partially commutative monoids’
arising in combinatorics [25].

3.1. ‘Normal order’ representation of words

Let us represent each primitive wordWp of lengthµ in the groupLFn+1(d) in the normal
order similar to the so-called ‘symbolic dynamics’ appearing in the context of chaotic
systems (see, for instance, [7])

Wp = (fα1)
m1(fα2)

m2 . . . (fαs )
ms (3.1)

where
∑s

i=1 |mi | = µ (mi 6= 0∀i; 1 6 s 6 µ) and the sequence of generatorsfαi in
equation (3.1)for all distinct fαi satisfies the following local rules [20]:

(i) if fαi = f1, thenfαi+1 ∈ {f2, f3, . . . fn};
(ii) if fαi = fk (1< k 6 n− 1), thenfαi+1 ∈ {fk−d+1, . . . , fk−1, fk+1, . . . fn};
(iii) if fαi = fn, thenfαi+1 ∈ {fk−d+1, . . . , fn−1}.
These local rules may be represented diagrammatically as follows.
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f1

f2 f3 fn

f1 f3 fn f2 f4 fn

· · ·

· · · · · ·
fn−2 fn fn−1

fn−1

���������������)
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A
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PPPPPPPPPPPPPPq
B
B
B
B
B
BN

The rules (i)–(iii) give the prescription to encode and enumerate all distinct primitive
words in the groupLFn+1(d). If the sequence of generators in the primitive wordWp does
not satisfy the rules (i)–(iii), we commute the generators in the wordWp until the normal
order is restored. Hence, the normal order representation enables one to give the unique
coding of all nonequivalent primitive words in the groupLFn+1(d).

Example 1.Take an arbitrary primitive word of lengthµ = 10 in the groupLF8+1(2):

Wp = f −1
5 f3f8f

−1
1 f2f4f8f8f4f7

≡ (f5)
−1(f3)(f8)(f1)

−1(f2)(f4)(f8)
2(f4)(f7). (3.2)

To represent the wordWp in the ‘normal order’ we have to push all generators with smaller
indices to the left when it is allowed by the commutation relations of the locally free group
LF9(2). We obtain

Wp = (f1)
−1(f3)

1(f2)
1(f5)

−1(f4)
2(f8)

3(f7)
1 (3.3)

(the ‘normal order’ for this word is the sequence of used generators:{1, 3, 2, 5, 4, 8, 7}).
To compute the number of different primitive words of lengthµ = 10 with the same

normal order as in equation (3.3), we have to sum up all the words like

Wp = (f1)
m1(f3)

m2(f2)
m3(f5)

m4(f4)
m5(f8)

m6(f7)
m7 (3.4)

under the condition
∑7

i=1 |mi | = 10;mi 6= 0∀mi ∈ [1, 7].
The calculation of the number of distinct primitive words,Vn(µ), of a given lengthµ

is now rather straightforward:

Vn(µ, d) =
µ∑
s=1

Rn(s, d)
∑′

{m1,...,ms }
1

[ s∑
i=1

|mi | − µ
]

(3.5)

where:
• Rn(s, d) is the number of all distinct sequences ofs generators taken from the set

{f1, . . . , fn} and satisfying the local rules (i)–(iii);
• the second sum gives the number of all possible representations of the primitive path

of lengthµ for the fixed sequence of generators(see the example above); ‘prime’ means
that the sum runs over allmi 6= 0 for 16 i 6 s; 1(x) is the Kronecker function:1(x) = 1
for x = 0 and1(x) = 0 for x 6= 0;
• special attention should be paid to the sequences built on the basis of one generator

only, i.e. for primitive words of typeWp = (fk)
µ∀k ∈ [1, n] (see definition ofRn(s, d)

below).
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To obtain the partition functionRn(s, d) let us mention that the local rules (i)–(iii) define
a generalized Markov chain with the states given by then × n ‘incidence’ matrixM̂n(d),
the rows and columns of which correspond to the generatorsf1, . . . , fn (the cased = 2 is
shown below)

M̂n(2) =

f1 f2 f3 f4 . . . fn−1 fn

f1 0 1 1 1 . . . 1 1

f2 1 0 1 1 . . . 1 1

f3 0 1 0 1 . . . 1 1

f4 0 0 1 0 . . . 1 1
...

...
...

...
. . .

. . .
...

...

fn−1 0 0 0 0
. . . 0 1

fn 0 0 0 0 1 0

. (3.6)

The matrixM̂n(d) has a rather simple structure: above the diagonal we put everywhere ‘1’
and below diagonal we haved−1 subdiagonals completely filled by ‘1’; in all other places
we have ‘0’.

The number of all distinct normally orderedsequences of wordsof lengths with allowed
commutation relations is given by the following partition function

Rn(s, d) = ṽin[M̂n(d)]
s−1vout (3.7)

where

ṽin = (
n︷ ︸︸ ︷

1 1 . . . 1) and vout =


1
1
...

1


 n. (3.8)

For s = 1 we haveRn(1, d) = ṽinvout = n as it should be.
The remaining sum in equation (3.5) is independent ofRn(s, d), so its calculation is

very simple: ∑′

{m1,...,ms }
1

[ s∑
i=1

|mi | − µ
]
= 2sCs−1

µ−1 (3.9)

whereCs−1
µ−1 is the binomial coefficient:Cs−1

µ−1 = (µ−1)!
(s−1)!(µ−s)! .

Substituting equations (3.9) and (3.7) into equation (3.5) we find

Vn(µ) ≡ Vn(µ, d) =
µ∑
s=1

2sCs−1
µ−1Rn(s, d)

= 2ṽin(2M̂n(d)+ Î )µ−1vout (3.10)

whereÎ is the identity matrix.
Such a quantity is rather difficult to evaluate exactly. A reasonable approximation is to

replace (3.10) by

V ∗n (µ) = 2
n∑
i=1

(2λi + 1)µ−1 (3.11)
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whereλi are the eigenvalues of the matrix̂Mn which can be shownall to be real (see the
later discussion). In order to check the validity of approximation (3.11) we have considered
the case{n = 3, d = 2} where the exact value reads

V3(µ) =
(

15+ 7
√

5

5

)
(2−
√

5)µ−1+
(

15− 7
√

5

5

)
(2+
√

5)µ−1

whereas the approximation (3.11) gives

V ∗3 (µ) = 2(2−
√

5)µ−1+ 2(2+
√

5)µ−1+ 2(−1)µ−1.

It can be seen that this approximation works reasonably well even for small values ofµ.
The valueVn(µ, d) grows exponentially fast withµ and the ‘rate’ of this growth is

clearly represented by the fraction

q(d) = Vn(µ+ 1, d)

Vn(µ, d)

∣∣∣∣
µ�1

(3.12)

which is the effective coordination number of the graphC(LFn).
In the next section we present calculations of the asymptotic expression of (3.11) when

n� 1.

3.2. Calculation of eigenvalues of matrix̂Mn(2)

Consider the determinant

an(λ) = det(M̂n − λÎ ) =


−λ 1 1 . . .

1 −λ 1 . . .

0 1 −λ . . .
...

...
...

. . .

 . (3.13)

It satisfies the recursion relation

an(λ) = −(λ+ 1)an−1(λ)− (λ+ 1)an−2(λ) (3.14)

with the boundary conditions

a0(λ) = 1

a1(λ) = −λ.
(3.15)

For λ > −1 one may set

an(λ) = (λ+ 1)
n−1

2 (−1)nϕn(λ) (3.16)

which gives

ϕn(λ) =
√
λ+ 1ϕn−1(λ)− ϕn−2(λ). (3.17)

The general solution of (3.17) satisfying the previously defined boundary conditions
(3.15) is given in terms of Chebyshev’s polynomials of the second kind

ϕn(λ) = Un+1(cosϑ) (3.18)

where

cosϑ =
√
λ+ 1

2

(
0< ϑ <

π

2

)
. (3.19)
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Therefore

an(λ) = (−1)n(λ+ 1)
n−1

2 Un+1(cosϑ)

= (−1)n(λ+ 1)
n−1

2
sin(n+ 2)ϑ

sinϑ
. (3.20)

The last expression enables us to obtain all the eigenvalues of the matrixM̂n. In fact,
it is convenient to distinguish them according to the parity ofn:

(1) n = 2m+ 1

λ0 = (−1) (m such values) λk = 4 cos2
kπ

2m+ 3
− 1 (k = [1, m+ 1]) (3.21)

(2) n = 2m

λ0 = (−1) (m such values) λk = 4 cos2
kπ

2m+ 2
− 1 (k = [1, m]). (3.22)

Since in each case we have exactlyn states, this exhausts the complete set of eigenvalues,
showing theyare all real in the interval [−1, 3]. One also recovers the result obtained earlier
in [20, 21] for the asymptotes of the highest eigenvalue of matrixM̂n (in the limit n� 1):

λmax= 4 cos2
π

n+ 2
− 1

∣∣∣∣
n�1

≈ 3− 4π2

n2
(k = 1). (3.23)

Now we are in position to compute the number of nonequivalent wordsV ∗n (µ) of
primitive length µ in the locally free groupLFn(2) for n � 1, n = constant (see
equation (3.11)). Using the definition (3.11) and equations (3.21), (3.22) we find for
n = 2m+ 1

V ∗n (µ) = (n− 1)(−1)µ−1+ 2

n+1
2∑

k=1

(
8 cos2

kπ

n+ 2
− 1

)µ−1

. (3.24)

We defineϕn(µ) as follows

V ∗n (µ) = (n− 1)(−1)µ−1+ 2ϕn(µ).

One can prove the following identity forµ < n:

ϕn(µ) = 1

2

n+1∑
k=1

(
8 cos2

kπ

n+ 2
− 1

)µ−1

= (n+ 2)

2π

∫ π

0
(8 cos2 x − 1)µ−1 dx − 1

2
7µ−1. (3.25)

Forµ� 1, n = constant� 1 the last integral is evaluated by a saddle-point approximation
which yields

ϕn(µ) = (n+ 2)

4π

√
π

2µ
7µ−1− 7µ−1. (3.26)

Thus, for the number of nonequivalent words in the locally free groupLFn(2) we have the
following limiting behaviour:

lim
µ→∞

n=constant�1

1

µ
lnV ∗n (µ) = ln 7 (3.27)

and equation (3.12) gives

q(d = 2) = 7.

Hence, the effective graph corresponding to the locally free group can be viewed as a
tree with the branching numberq = 7.
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4. Approximate statistical approach to word enumeration in the braid groupBn

The construction of an effective algorithm for the enumeration of the words in the braid
groupBn for n > 2 is one of the most intriguing problems in group theory.

In this section we propose anapproximate statistical approachfor the enumeration of
all distinct primitive words in the groupBn for n � 1 which exploits some properties of
locally free groupsLFn considered above.

The main idea is as follows. Let us deal with the sequences of words in the braid group
Bn from the point of view of the locally free groupLFerr

n ‘with errors’. To be more specific
let us start with the following example.

Example 2.Write a random wordW in the groupB7. Let this word be, for instance,

W = (σ1)
−1σ4(σ5)

−1(σ6)
−1σ5σ1σ6(σ2)

−1.

We reduce this word to the primitive one in two steps.

(1) On the first step we act in the same way as in the case of the locally free groupLF7

and push all generators with smaller indices to the leftassuming that nearest neighbours do
not commute at all. We find,

Wreduced= (σ2)
−1σ4(σ5)

−1 (σ6)
−1σ5σ6︸ ︷︷ ︸

σ5σ6(σ5)−1

.

(2) Now we can apply the Yang–Baxter relations to the triple(σ6)
−1σ5σ6 and obtain

after the cancellation of(σ5)
−1 andσ5 the primitive word

Wp = (σ2)
−1σ4σ6(σ5)

−1.

The first step of the braid contracting procedure exactly coincides with what we did for
the locally free group, while the second step we could regard (approximately, of course) as
follows.

Consider some pair, for instance,(σ6)
−1 σ5. We commute it with a probabilityp. Such

commutation we denote as anerror. The probability to meet the letterσi in the Markov chain
with uniform distribution over the generators in the braid groupBn is of order ofp = 1

2n .
Later on we consider the more general case takingp as a variational parameter.

Let V braid
n (µ) be the number of all primitive words of lengthµ in the braid groupBn.

Our main idea is as follows: we would like to relate the quantityV braid
n (µ) to the number of

primitive words in the ‘group’LFerr
n (2) averaged over the uniform distribution of ‘errors’

in commutation relations.

4.1. Statistics of words with ‘errors’ in locally free groups

The techniques for the analysis of disordered systems are rather well developed, especially
those used in thespin-glass models[26].

Central to these methods is the concept ofself-averagingwhich can be explained as
follows. Take some additive functionF (the free energy, for instance) of some disordered
system. The functionF is a self-averaging quantity if the observed value,Fobs, of any
macroscopic sample of the system coincides with the valueFav averaged over the ensemble
of disorder realizations:

Fobs= 〈F 〉av.

The phenomenon of self-averaging takes place in systems with sufficiently weak long-
range correlations: only in this case canF be considered as a sum of contributions from
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different volume domains, containing statistically independent realizations of disorder (for
more details see [18]).

The main technical problem of systems withquencheddisorder is the calculation of
the free energyF(µ) averaged over the randomly distributed quenched pattern. In our case
we could associate the number of topologically different words with the partition function,
hence the free energy would beF(µ) = −〈lnV err

n (µ)〉 and the ‘quenched pattern’ is just
the set of ‘errors’ in commutation relations.

A problem closely related to that mentioned above arises when averaging the correlation
functions of some statistical system over disorder. In this case we should find the averaged
density of states of some random matrix with a prescribed distribution of random entries.
Below we show that the calculation of the mean value〈V err

n (µ)〉 belongs precisely to this
class of problems.

Before formulating our main conjecture (which is verified hereafter in a self-consistent
way) let us regard the limiting casesp = 1 andp = 0.

(i) For p = 1 we have a complete commutative group and the obvious inequality is
fulfilled

V braid
n (µ) > Vn(µ, d = 2, p = 1). (4.1)

(ii) For p = 0 we return to the locally free groupLF2, for which we should have

V braid
n (µ) 6 Vn(µ, d = 2, p = 0) (4.2)

whereVn(µ, d = 2, p) is the number of all distinct primitive words of lengthµ with the
‘errors’ in the commutation relations in the locally free groupLFn(2) and we allow to
commute the neighbouring generators to commute with the probabilityp.

Conjecture. The number of nonequivalent primitive words,V braid
n (µ), of lengthµ in the

braid groupBn can be estimated in the limitsn = constant� 1, µ� 1 as follows

V braid
n (µ) ≈ 〈Vn(µ, d = 2, p)〉 (4.3)

while the averaging is performed over the uniform probability distribution of ‘errors’.

The question concerning the choice ofp is considered below.
In support of our conjecture we invoke the numerical computations performed in

the work [21], where we have constructed the (right-hand) random walk (the random
word) on the groupGn = {LFerr

n , Bn} with a uniform distribution over generators
{g1, . . . , gn−1, g

−1
1 , . . . , g−1

n−1} ∈ Gn. It means that with a probability 1
2n−2 we have added

the elementgαN or g−1
αN

to the given word ofN − 1 generators (letters) from the right-hand
side. In [21] the following question has been raised: what is the averaged length〈µ〉 of the
primitive path for theN -step random walk on the groupGn?

In table 1 we show the results of numerical simulations carried on in [21] for the
expectation value〈µ〉/N of the N -step random walk on the ‘locally free structure with
errors’,LFerr

n (2), and compare them with the same value for theN -step random walk on
the braid groupBn.

We find asymptotically a very good correspondence between the mean values〈µ〉/N
for the braid group and the ‘locally free structure with errors’ forp = 1

5.
Our conjecture has a ‘mean-field’ nature because we allow two consecutive generators

(σαk , σαk+1) with nearest neighbour indicesαk+1 = αk ± 1 to commute with probabilityp
regardless of the value of the generatorσαk+2 in the sequence of letters in the word. Hence
the problem of choosing the correct value ofp appears.
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Table 1.

LFerr
n with p = 1

5 Bn

n 〈µ〉/N 〈µ〉/N
5 0.55 0.49

10 0.58 0.56
20 0.59 0.59
50 0.60 0.61

100 0.60 0.61
200 0.61 0.61

In the frameworks of the mean-field approximation and taking into account
equation (4.3) we claim:

〈Vn(µ, d = 2, p)〉|p→1− 6 V braid
n (µ) 6 Vn(µ, d = 2, p = 0). (4.4)

We prove below that in the limitn→∞, µ→∞ the following equality is satisfied

〈Vn(µ, d = 2, p)〉|p→1− = Vn(µ, d = 2, p = 0). (4.5)

Thus, for the valueV braid
n (µ) we have the following asymptotic behaviour

lim
µ→∞
n→∞

1

µ
lnV braid

n (µ) = lim
µ→∞
n→∞

[
1

µ
ln〈Vn(µ, d = 2, p)〉

]
independent

on p

= ln 7. (4.6)

It is easy to understand that the number of nonequivalent primitive wordsVn(µ, d =
2, p) in the ‘locally free group with errors’ can be calculated by means of averaging
equation (3.10) if we slightly change the matrix̂Mn replacing it by the random incidence
matrix M̂n:

M̂err
n (d = 2) =

f1 f2 f3 f4 . . . fn−1 fn

f1 0 1 1 1 . . . 1 1

f2 xn−1 0 1 1 . . . 1 1

f3 0 xn−2 0 1 . . . 1 1

f4 0 0 xn−3 0 . . . 1 1
...

...
...

...
. . .

. . .
...

...

fn−1 0 0 0 0
. . . 0 1

fn 0 0 0 0 x1 0

. (4.7)

It is now parametrized by the random sequence of ‘0’ or ‘1’, i.e.

{x(n)} = {xn−1, xn−2, . . . , x2, x1} (4.8)

where

Prob(xj = 1) = 1− p
Prob(xj = 0) = p. (4.9)



5622 A Comtet and S Nechaev

4.2. Density of states of random operator and averaged number of nonequivalent words

The determinant of the matrix̂Merr
k (d = 2) − λÎ (see equation (4.7)) satisfies the random

recursion relation

ak+1+ ak(λ+ xk)+ ak−1(1+ λ)xk = 0. (4.10)

Introducing the Ricatti-like variable

ρk = ak+1

ak

we arrive at the recursion relation

ρk = −(λ+ xk)− (1+ λ)xk
ρk−1

k ∈ [0, n] (4.11)

with the boundary conditionρ0 = −λ.
For the continuous sequence of{1}, i.e. {x(n)} = {1 1 1 1 . . . 1} we have the following

(nonrandom) transformation

ρk+1 = −(λ+ 1)

(
1+ 1

ρk

)
. (4.12)

As soon as a zero appears in the random sequence,ρk in (4.11) is set to−λ which coincides
precisely with the initial valueρ0. Since one returns to the initial value, the process can
be easily iterated for arbitrary random sequences{x(n)} whenn � 1. Such a property of
the map (4.11) is equivalent to the factorization of the determinantan(λ) of the random
matrix M̂err

n (d = 2) − λÎ . Consider the sequence{x(n)} = (1 1 . . . 1︸ ︷︷ ︸
l1

0 0 . . . 0︸ ︷︷ ︸
m1

1 . . . 1︸ ︷︷ ︸
l2

),

the corresponding determinantan(λ) factorizes:an(λ) =
∏
{lj } alj (λ)

∏
{mj }(−λ)mj−1.

It is worth pointing out that a recursion relation similar to (4.12) also appears in the
study of the binary product of random 2× 2 matrices where one of the matrices is singular
[30]. Such a structure also occurs in the case of the Ising model in a random magnetic field,
see [31]. Following Derrida and Hilhorst [31], one can write down the invariant measure
associated with (4.11):

P(ρ) =
∞∑
k=1

p(1− p)kδ(ρ − ρk)+ (1− p)
∞∑
k=1

pkδ(ρ − ρ0). (4.13)

The first (second) term comes from the complete sequences of{1} ({0}) of arbitrary length
k = 1, 2, . . .. From the invariant measure one can compute〈ln a(λ)〉 which can be
interpreted either as a Lyapunov exponent or as the free energy (depending on the physical
context). Hence we find:

〈ln a(λ)〉 =
∫
P(ρ) ln ρ dρ =

∞∑
k=1

p2(1− p)k−1 ln ak(λ). (4.14)

Returning to our problem, we may use this expression to write down the averaged
density of states

〈ρ(λ)〉 = 1

π

∂

∂λ
Im 〈ln a(λ)〉 ≡

∞∑
k=1

p2(1− p)k−1ρk(λ) (4.15)

where ρn(λ) ≡ 1
π

Im ln an(λ) is the density of states of a pure system (i.e. without
randomness) of lengthn. From the density of states we can find the average number
of words in the limitn→∞.
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Define〈V ∗(µ, p)〉 as follows

〈V ∗(µ, p)〉 = lim
n→∞
〈V ∗n (µ)〉

n
= 2

∫
(2λ+ 1)µ−1〈ρ(λ)〉 dλ (4.16)

where the integration overλ runs over the whole spectrum. Let us repeat once more that
the function〈ρ(λ)〉 is the density of states of the random matrix̂Mn(d = 2) (n → ∞)
averaged over the disordered pattern{x(n)}.

Some additional aspects concerning the relation of these problems with disordered
systems are discussed in the appendix.

The physical content of equation (4.15) is as follows. The density of states〈ρ(λ)〉
can be obtained by averaging the spectrum of the regular case ‘weighted’ with associated
sequences of{1}:

Prob

{
x = (0 1 1 1 1 . . . 1 1 1︸ ︷︷ ︸

complete set of{1}
0)

}
= p2(1− p)n. (4.17)

One should also add the contribution coming from the zero-energy state corresponding
to entire sequences of{0}. The resulting expression reads

〈ρ(λ)〉 =
∞∑
m=1

p2(1− p)2m−1

{
mδ(λ+ 1)+

m∑
k=1

δ

(
λ+ 1− 4 cos2

kπ

2m+ 2

)}

+
∞∑
m=0

p2(1− p)2m
{
mδ(λ+ 1)+

m+1∑
k=1

δ

(
λ+ 1− 4 cos2

kπ

2m+ 3

)}
(4.18)

which may be rewritten as

〈ρ(λ)〉 = 1− p
2− pδ(λ+ 1)+

∞∑
n=0

p2(1− p)n
[ n+2

2 ]∑
k=1

δ

(
λ+ 1− 4 cos2

kπ

n+ 3

)
(4.19)

where [x] denotes the integer part ofx.
Using equation (4.19) we may check that the function〈ρ(λ)〉 is properly normalized:∫ +∞

−∞
〈ρ(λ)〉 dλ =

∫ 3

−1
〈ρ(λ)〉 dλ = 1.

Returning to (4.16) we find

〈V ∗(µ, p)〉 = 2

(
1− p
2− p

)
(−1)µ−1+ 2

∞∑
n=0

p2(1− p)nSn+2(µ) (4.20)

where

Sn(µ) =
[ n2 ]∑
k=1

(
8 cos2

kπ

n+ 1
− 1

)µ−1

(4.21)

(cf (3.24)).
In order to check the algebra we have computed〈V ∗(µ, p)〉 for small values ofµ. One

finds

〈V ∗(1)〉 = 〈V ∗(2)〉 = 2

which can be readily obtained through a direct calculation of limn→∞ 2ṽin(2M̂n+ Î )µ−1vout.
We are, however, mainly interested in the limitµ→∞.
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Using (3.25) we may resum the series (4.20) by isolating the contributionn < µ and
n > µ. After some algebra one obtains forµ < n+ 1

Sn(µ) = (n+ 1)
µ−1∑
p=1

C
p

µ−12pCp−1
2p−1− 1

2{7µ−1+ (−1)µ} −
[n

2

]
(−1)µ (4.22)

whereCpµ−1 andCp−1
µ−1 are the binomial coefficients.

Equation (4.22) gives

Sn(µ)|µ�1 '
{

7µ n0 < n < µ

(n+ 1)7µ µ < n
(4.23)

wheren0 is some constant (n0 ≈ 5). The curve lnSn(µ) is plotted in figures 2(a), (b).
Thus, we can rewrite equations (4.20), (4.21) as follows

〈V ∗(µ, p)〉 = 2

(
1− p
2− p

)
(−1)µ−1+

µ∑
0

p2(1− p)nSn+2(µ)+
∞∑
µ

p2(1− p)nSn+2(µ).

(4.24)

The corresponding behaviour of the functionQ(p|µ) where

Q(p|µ) = ln〈V ∗(µ, p)〉
µ

(0< p < 1) (4.25)

is shown in figure 3 for few fixed valuesµ = {10, 30, 150}.
The plot in figure 3 enables us to come to the following conclusions.
(i) If the number of ‘errors’ is small (p → 0+), the volume of the group grows

exponentially with the Lyapunov exponent ln 7 (forµ→∞).
(ii) For an arbitrary number of ‘errors’,p, the corresponding Lyapunov exponent

approaches the same value ln 7 for allp < 1 in the limit µ→∞ and exhibitsa singular
behaviour just at the pointp = 1 (which corresponds to a completely commutative group).

The asymptotic expression (4.24) allows us to conclude that the limit behaviour of the
functionV ∗(µ) is independent ofp, ∀p ∈]0, 1[ and is the same as for the locally free group
LFn without any errors. This fact proves relation (4.6) and hence supports our conjecture
(4.3).

It should be emphasized that these results are expected to hold only in the
thermodynamic limitn→∞. It would be more desirable to consider the limit in which the
number of generatorsn is kept fixed and the length of the word,µ, is much larger thann.

5. Discussion

5.1. The geometrical view of the word enumeration problem

The number of primitive words in the locally free or braid groups allows a rather
straightforward geometrical description, namely, the matrixM̂n(d = 2) can be regarded as
the transfer matrix for the model of a ‘biased Levy-flight’-like (‘BLF’-like) one-dimensional
random walk on the finite support. Actually, let us compute the statistical sum of the process
described below. Taken integers on the line: 1, 2, . . . , n and consider the random walk
when the walker can jump with equal probabilities from the vertex with the coordinatem1

(16 m1 < n) to:
(i) each vertex with the coordinatem2 (m2 ∈ [m1+ 1, n]);
(ii) the vertex with the coordinatem2 = m1− 1 (i.e. one step back).
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Figure 2. Plot of the function lnSn(µ) in two regimes (equation (4.22)).

The corresponding process is represented schematically in figure 4.
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Figure 3. Plot of the functionQ(p|µ) for three fixed values ofµ = {10, 30, 150}—see
equation (4.25).

Figure 4. Schematic representation of the process associated with the ‘biased Levy-flight’
(BLF)-like random walk.

Analogously, we can associate the random operatorM̂err
n with the transfer matrix of the

generalized BLF-like random process which is described via the same rules (i) and (ii) but
with the additional requirement that the jump (ii) is blocked with probabilityp and allowed
with probability 1− p, independently of the position of the vertex.
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5.2. Final remarks

We have proposed a statistical method for enumerating the primitive words in the braid
groupBn based on the consideration oflocally free groups with errors in the commutation
relations. We invoked self-consistent arguments in support of the conjecture that the number
of long primitive words in the braid group is not sensitive to the precise local commutation
relations.

We have found an intriguing connection between the above mentioned problems:
conventional random operator theory, localization phenomena and the theory of automorphic
functions—see the appendix for details.

We believe that the problem of discovering the integrable models associated with the
proposed locally free groups and developing the corresponding conformal field theory could
help establish a bridge between the statistics of random walks on noncommutative groups,
spectral theory on multiconnected Riemann surfaces, and topological field theory.
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Appendix. Functional equation, continued fractions and invariant measure

The behaviour of the spectral density of our model is very similar to the one encountered
in the study of harmonic chains with binary random distribution of masses. This problem,
which goes back to Dyson has been investigated by Dombet al [27] and then thoroughly
discussed by Nieuwenhuizen and Luck [28]. One considers a chain of oscillators where the
masses can take two values:

m with the probability 1− p
M > m with the probabilityp.

In the limit M → ∞ the system breaks into islands, each of which consist ofn light
masses surrounded by two infinite heavy masses. The probability of occurrence of such
an island isp2(1 − p)n. There is clearly a mapping to our model if one replaces the
sequences of heavy and light masses by the sequences of ‘0’ and ‘1’. Many results may
therefore be borrowed from the works [27, 28]. In particular, by adapting the calculations
of Nieuwenhuizen and Luck to our case one may rewrite the integrated density of states

〈N (λ)〉 =
∫ λ

−∞
〈ρ(λ′)〉 dλ′

in the form

〈N (λ)〉 = 1− p

(1− p)2
∞∑
n=1

(1− p)Int( nπ
ϑ
) (A.1)

where the relation betweenλ andϑ is given in equation (3.19).
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For λ→ −1 one obtains〈N (λ)〉 → 1−p
2−p which corresponds to the contribution of the

statesλ = −1 at the bottom of the spectrum.
At the upper edge of the spectrum (namely forλ→ 3−) one obtains〈N (λ)〉 → 1 which

means that all the states are counted. Equation (A.1) shows that the behaviour aroundλ = 3
(corresponding toϑ = 0) is in fact dominated by the first term (n = 1) of the series. One
has

〈N (λ)〉 ' 1− p

(1− p)2 (1− p)
2π√
3−λ

≡ 1− p

(1− p)2 exp

[
2π√
3− λ ln(1− p)

]
. (A.2)

The behaviour (A.2) signals the appearance of Lifshits’ singularity in the density of
states. A more precise analysis shows that this result is in fact modulated by a periodic
function [28].

Equation (A.1) displays many interesting features. In particular, the function〈N (λ)〉
occurs in the mathematical literature as a generating function of the continued fraction
expansion ofπ

ϑ
.

Let us briefly sketch this connection. Consider the continued fraction expansion

π

ϑ
= 1

c0+ 1

c1+ 1

c2+ · · ·

(A.3)

where allcn are natural integers. Truncating this expansion at leveln we obtain a rational
numberpn

qn
which converges toπ

ϑ
whenn→∞.

A theorem of B̈ohmer [29] states that the generating function of the integer part ofπ
ϑ

G(z) =
∞∑
n=1

zInt( nπ
ϑ
)

is given by the continued fraction expansion

G(z) = z

1− z
1

A0+ 1

A1+ 1

A2+ · · ·
where

An(z) =
( 1
z
)qn − ( 1

z
)qn−2

( 1
z
)qn−1 − 1

andqn is the denominator of the fractionpn
qn

approximating the valueπ
ϑ

.
In order to make a connection with our problem it is sufficient to setz = 1− p and

express〈N (λ)〉 in terms ofG(z).
Equation (A.1) shows that the invariant measure is a very singular object. However,

it satisfies a simple functional equation reminiscent of that which arises in the theory of
automorphic forms. The equation can be derived either by a Dyson–Schmidt approach (see,
for instance, [18]) or just by looking at the explicit expression ofP(ρ).

It is in fact simpler to work with the rescaled variable

zn = − 1√
λ+ 1

ρn
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which satisfies the recursion relation equivalent to equation (4.12)

zn = h− 1

zn−1
(A.4)

where h = √λ+ 1. The transformation (A.4) may be obtained from the two matrices
belonging to the groupSL(2,R)

T̂ =
(

1 h

0 1

)
Ŝ =

(
0 −1
1 0

)
.

TheSL(2,R)-transformationT̂ Ŝ = (a b
c d

)
acts onz by the fractional linear transformation

zn = azn−1+ b
czn−1+ d = h−

1

zn−1
. (A.5)

The invariant measure of (A.4), which may be rewritten as

P(z) =
∞∑
n=0

p(1− p)nδ(z− [ŜT̂ ]nz0) (A.6)

can easily be shown to satisfy the fundamental equation

P(z) = 1

1− p (cz+ d)
2P(ŜT̂ z) (A.7)

up to some singular terms.
By suitable rescaling it is in fact possible to absorb the prefactor 1/(1−p) and rewrite

equation (A.7) as

P(ĝz) = (cz+ d)−2P(z) (A.8)

whereĝ ∈ SL(2,R).
An analytical continuation of this expression into the complexz-plane would eventually

permit one to interpretP as an automorphic form. From the theory of automorphic functions
it is well known that equation (A.8) is satisfied by the Dedekind modular functionη(z):

η(z) = 1

(cz+ d)2η
(
az+ b
cz+ d

)
(ad − bc = 1).

Such objects although perfectly smooth in the upper half-plane Imz > 0, display highly
nontrivial fractal behaviour on the boundary Imz = 0 (see, for instance, [7, 32]).

Another interesting connection which would be worth investigating is the fact that
Ŝ and T̂ generate the so-called Hecke group0(h) for h = 2 cosπ

q
(q > 3 is integer).

Surprisingly, these values ofh coincide with a subset of the spectrum of the matrixM̂n (see
equation (3.21)).
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